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Abstract. The interaction between incident surface water waves and floating elastic plate is studied. This paper
considers the diffraction of plane incident waves on a floating flexible ring-shaped plate and its response to the
incident waves. An analytic and numerical study of the hydroelastic behavior of the plate is presented. An inte-
gro-differential equation is derived for the problem and an algorithm of its numerical solution is proposed. The
representation of the solution as a series of Hankel functions is the key ingredient of the approach. The problem
is first formulated. The main integro-differential equation is derived on the basis of the Laplace equation and thin-
plate theory. The free-surface elevation, plate deflection and Green’s function are expressed in polar coordinates
as superpositions of Hankel and Bessel functions, respectively. These expressions are used in a further analysis of
the integro-differential equation. The problem is solved for two cases of water depth: infinite and finite. For the
coefficients in the case of infinite depth a set of algebraic equations is obtained, yielding an approximate solution.
Then a solution is obtained for the general and most interesting case of finite water depth analogously in the
seventh section. The exact solution might be approximated by taking into account a finite number of the roots
of the plate dispersion relation. Also, the influence of the plate’s motion on wave propagation in the open water
field and within the gap of the ring is studied. Numerical results are presented for illustrative purposes.

Key words: diffraction, hydroelastic response, integro-differential equation, plate-water interaction, ring-shaped plate

Abbreviations: VLFP – very large floating platform, IWD – infinite water depth, FWD – finite water depth, IDE
– integro-differential equation.

1. Introduction and background

This paper considers the hydroelastic behavior of a floating elastic plate and its response to
the incident surface water waves. A thin plate with elastic properties serves as a model for
a very large floating platform (VLFP) designed for the purpose of an airport, ferry pier or
other artificial construction, floating in offshore zone. VLFPs have a mat-like dynamic behav-
ior which can be described by the plate motion equation. As the horizontal dimensions of
VLFP are about several kilometers by several hundred meters, while the thickness and draft
are of order of several meters, it is possible to consider the platform as a thin plate, using one
of the standard theories of Kirchhoff, Timoshenko or Mindlin. Such a plate can also serve as
a model of a huge ice field for studying ice-water interaction. Water depth plays an important
role; therefore, the theory is divided into three cases: very deep water (depth assumed to be
infinite), water of finite depth, and shallow water.

There are many papers considering plate-water interaction. For this problem a very
detailed literature survey has recently been published by Watanabe et al. [1]. Mainly plates
of rectangular platforms were studied, while there are very few papers considering arbitrarily
shaped VLFPs. Several papers, studying the circular plate, have been published recently. The
problem for the circular plate for shallow water was solved by Zilman and Miloh [2] and
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Tsubogo [3]. For finite water depth the problem was solved by Watanabe et al. [4] by use of
the Galerkin method and Mindlin plate theory, and Peter et al. [5] who presented a solution
based on decomposing the deflection into angular eigenfunctions. Andrianov and Hermans
[6] solved the problem of the circular disk for water of finite and infinite depth, using an
integro-differential formulation.

Here we extend the theory to the case of a ring-shaped plate (or, as in some of the litera-
ture, a circular plate with a circular hole). The floating structure of this form may be either of
large dimension, for purposes of VLFP, or small, for other purposes. The hydroelastic behav-
ior of the ring-shaped floating elastic plate and its response to incident surface waves are
investigated. The ring floats on the surface of ideal, incompressible fluid. We consider two
cases of water depth. First, we study the behavior of the ring floating on the surface of water
of infinite depth. Next, the case of water of finite depth is considered, where the general anal-
ysis and set of equations are more complicated as more roots of a water dispersion relation
have to be taken into account. An analytical study is carried out and presented for both cases.
The problem for water of shallow depth can be solved more easily by the use of well-known
Stoker approximation theory. In the latter case a set of equations is derived from free-edge
and transition conditions at the inner and outer edges of the ring.

An integro-differential formulation, which allows us to solve the diffraction problem for
different geometrical configurations, was developed and applied in [6–9]. This formulation
might be applied to a plate of finite or infinite dimensions and even to the case of multiple
plates. Also the thin plate theory, standard Laplace equation in the fluid, supplemented by
surface and boundary conditions, and Green’s theorem are used.

We consider a plate having elastic properties of constant flexural rigidity and homoge-
neous stiffness. The edges of the ring are free of shear forces, bending and twisting moments.
The plate deflection is generated by incoming plane surface waves. The solution for the
plate deflection and free-surface elevation in the far field and ring gap is derived. The plate
deflection is represented as a superposition of Hankel functions with corresponding coeffi-
cients, containing amplitudes. In a similar way, we represent the Green’s function, obeying the
boundary conditions at the free surface, as a series of Bessel functions for both cases of water
depth. Next, Graf’s addition theorem is applied to the Green’s function.

Further, we derive the governing integro-differential equation. The problem involves two
dispersion relations: one in the plate region and the other in the open water. An analysis of
integrals in the complex plane and use of Cauchy’s theorem and the Wronskian lead us to the
dispersion relation in the plate region. Furthermore, we derive from the integro-differential
equation, supplemented by the free-edge conditions, a set of equations for the coefficients in
the series expansion to determine the plate deflection. Also, we study the free-surface eleva-
tion in the ring gap and in the open water field. To analyze the influence of the presence of
the plate on the propagation of the incoming waves, results are obtained for the wave pattern
generated by the plate’s motion. Numerical results for the plate deflection and the free-surface
elevation are obtained for different values of the physical parameters.

2. Mathematical formulation

A floating thin elastic ring-shaped plate of inner radius r1 and outer radius r0 covers a part
of the surface of an ideal, incompressible expanse of water. The plate with zero thickness can
serve as a model of the VLFP, as described above, due to the small thickness and shallow
draft of the platform. The water depth h is infinite for the case of deep water and finite and
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constant for the other case. We assume that no space exists between the free surface and the
plate. The flexural rigidity of the thin elastic isotropic plate is constant.

The plate deflection is generated by incoming surface waves of length λ. It is also assumed
that incoming waves are propagating in water that is still homogeneous in the positive
x-direction. The wave amplitude A is rather small in comparison with other length-parameters
of the problem.

The horizontal geometry sketch of the plate is shown in Figure 1. The radial coordinate
ρ is measured from the centre of the plate. We denote the surface of the fluid domain in the
plate region (r1 ≤ρ ≤ r0) as P and in the open water as F , where the open-water region out-
side the plate is F0 (ρ >r0) and the gap area F1 (ρ <r1). Three-dimensional Laplacian is

�=∇2 = ∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2
+ ∂2

∂z2

in polar coordinates, while their relations to Cartesian coordinates are the following: ρ2 =x2 +
y2, ϕ =arctan y/x, z= z.

The velocity potential is introduced by ∇�(ρ, t)=V(ρ, t), where V(ρ, t) is the fluid veloc-
ity vector. The velocity potential �(ρ, t) is a solution of the governing Laplace equation in
the fluid

��=0, (1)

for z<0 in the case of infinite water depth (IWD) or −h<z<0 for finite water depth (FWD),
supplemented by the boundary conditions at the free surface and at the bottom. The linear-
ized kinematic condition in the plate and water regions, at the surface z=0, has the form

∂�

∂z
= ∂w

∂t
, (2)

where w(ρ,ϕ, t) denotes either the free-surface elevation or the deflection of the plate; t is
the time. Later, to distinguish the vertical displacements, we denote the free-surface elevation
in the open water region F by ζ , while the plate deflection in P is still denoted by w. The
dynamic condition, derived from the linearized Bernoulli equation, has the form

P −Patm

ρw
=−∂�

∂t
−gw, (3)
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Figure 1. Geometry and coordinate system of the problem.
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at z=0, where ρw is the density of the water, g is the gravitational acceleration, P(ρ,ϕ, t) is
the pressure in the fluid, and Patm is the atmospheric pressure. Relations (2–3) are the kine-
matic and dynamic conditions at the free surface. The linearized free-surface condition in the
water region F takes the form

∂�

∂z
=− 1

g

∂2�

∂t2
(4)

at z = 0. The other boundary condition at the bottom z =−h, applying to the case of finite
depth, is written in the following form

∂�

∂z
=0. (5)

The edges of the ring are free of vertical shear forces, bending and twisting moments.
Therefore, the free-edge conditions at ρ = r1 and ρ = r0 are:{

∇2 − (1−ν)

ρ

(
∂

∂ρ
+ 1

ρ

∂2

∂ϕ2

)}
w =0, (6)

{
∂

∂ρ
∇2 + (1−ν)

ρ2

(
∂

∂ρ
− 1

ρ

)
∂2

∂ϕ2

}
w =0, (7)

where ν is the Poisson ratio. Here and in the sequel the Laplacian is two-dimensional, except
when the Green’s function is derived.

3. Integro-differential equation

In this section the main integro-differential equation (IDE) is derived along the plate con-
tour, consisting of the inner and outer edges of the ring. We use the approach described and
applied in [7,8] for plates of rectangular shape in Cartesian coordinates. The derivation of
IDE in polar coordinates has recently been published by the authors [6].

To describe the deflection of the plate w we apply the isotropic thin-plate theory, see,
e.g., [10], which leads to a differential equation at z = 0 in the plate area P , known as the
Gehring-Kirchhoff equation

D�2w +m
∂2w

∂t2
=P −Patm, (8)

where m is the mass of a unit area of the plate, D is the flexural rigidity, expressed in terms
of Young’s modulus E, Poisson ratio ν and the plate thickness hp:

D = Eh3
p

12(1−ν2)
.

For both IWD and FWD cases, we apply the operator ∂/∂t to (8) and use the surface con-
ditions (2) and (3) to arrive at the following equation for the total potential �(

D

ρwg
�2 + m

ρwg

∂2

∂t2
+1

)
∂�

∂z
+ 1

g

∂2�

∂t2
=0. (9)

With the usual assumptions of an ideal fluid and small wave amplitude, the potential
can be written in the form �(ρ,ϕ, z, t)=φ(ρ,ϕ, z)e−iωt , where ω is the wave frequency; this
means we consider harmonic waves. From (2) it follows that the surface elevation has the
same harmonic behavior, whence we have the functions w(ρ,ϕ) and ζ(ρ,ϕ) in P and F ,
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respectively. Thus, we consider waves of the single frequency ω and obtain the following
differential equation for the potential φ at z=0(

D�2 −µ+1
) ∂φ

∂z
−Kφ =0, (10)

where D =D/ρwg, µ=mω2/ρwg are additional physical parameters that are constant as the
plate considered is isotropic, and K =ω2/g.

The potential of the undisturbed incident wave φinc, in polar coordinates, is

φinc(ρ, ϕ, z)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

gA

iω
eik0ρ cosϕ+k0z for IWD,

cosh k0(z+h)

cosh k0h

gA

iω
eik0ρ cosϕ for FWD,

(11)

where A is the amplitude of the incident wave, and k0 is the wave number. The wave height
is defined as twice the amplitude. For deep water the wave number is k0 =K and for water of
finite depth the wave number k0 is the positive real solution of the water dispersion relation

k tanh kh=K. (12)

The length of the incoming waves is λ= 2π/k0. Normally, in a practical situation the outer
diameter 2r0 of the ring-shaped VLFP is longer than the wave length; the reverse case corre-
sponds to extremely long waves.

The potential must satisfy the Sommerfeld radiation condition

√
ρ

(
∂

∂ρ
− ik0

)(
φ −φinc

)
=0 (13)

when ρ →∞.
The free-surface elevation ζ in the open water F equals to the sum of the incident wave

elevation ζ inc, and the additional wave elevation ζ pm, generated by the plate motion

ζ = ζ inc + ζ pm. (14)

The total potential in F is also represented as the sum of the incident wave potential and the
potential of waves arising because of the motion of the plate

φF =φinc +φpm, (15)

where φpm is the diffraction potential plus the radiation potential. In fact, the potential φpm

must satisfy radiation condition (13). The governing equations for the regions F0 and F1 are
the same; due to the fact that ρ > r0 and ρ < r1, respectively, differences in the analysis will
appear, which will be discussed later.

We introduce the Green’s function G(r, θ;ρ,ϕ), fullfilling the free-surface and the radia-
tion conditions, and apply Green’s theorem to the potentials in the water and plate regions
φF and φP , respectively. Analyzing the obtained relations and using the dynamic (10) and
kinematic (2) conditions, we obtain the main integro-differential equation in general form at
the free surface z=0{

D�2 −µ+1
}

w(ρ,ϕ)= K

4π

∫
P

{
D�2 −µ

}
G(r, θ;ρ,ϕ)w(r, θ) r dr dθ +Aeik0ρ cosϕ, (16)
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where the last term represents the potential of the incoming waves. The presented derivation
of IDE can be done in polar and Cartesian coordinates, i.e., for plates of any geometrical
shape. Detailed information on the derivation of IDE is given in [6] for polar coordinates and
in [7–8] for Cartesian coordinates.

4. Green’s function and deflection

In this section we describe the Green’s function, plate deflection and the operations on corre-
sponding Bessel and Hankel functions for the ring-shaped plate. The general expressions for
the Green’s function of a surface singularity for water of infinite and finite depth can be found
in [11]. The description of the modified Green’s function, which is used in this paper, was
published by the authors in [6].

We introduce the Green’s function for a source within the fluid that in Cartesian coordi-
nates fulfills �G = 4πδ(x − ξ), where δ is the Dirac δ-function, x is a source point and ξ is
an observation point. The Green’s function obeys the boundary conditions at the free sur-
face, Gz = KG, and at the bottom (for FWD) as well as the radiation condition. The three-
dimensional Green’s function at z= ζ =0 takes the following form [6]

G(x, y; ξ, η)=−2
∫
L

F(k)J0(kR)dk, (17)

where J0(kR) is the Bessel function, R measures horizontal distance, viz. R2 = (x − ξ)2 + (y −
η)2 in Cartesian coordinates. L is the integration contour in the complex k-plane from 0 to
+∞, passing beneath the singularity k = k0, as shown in Figure 2, and chosen such that the
radiation condition is satisfied. The function F(k) in (17) is given by

F(k)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k

k −k0
for IWD, (a)

k cosh kh

k sinh kh−K cosh kh
for FWD, (b).

(18)

In the FWD case we have additional poles k = ±ki on the imaginary axis of the complex
plane.

The horizontal distance R in polar coordinates is written as R2(ρ, ϕ; r, θ) = ρ2 + r2 −
2ρr cos (θ −ϕ). Here ρ and r are the distances from the center of the plate to the source and
observation points, respectively, and θ −ϕ is the angle between r and ρ.

If we apply Graf’s addition theorem to the Bessel function J0(kR), which is also called
Neumann’s formula for the Bessel function of order zero, it can be replaced by the series [12]

J0(kR)=
∞∑

q=0

δqJq(kr)Jq(kρ) cosq(θ −ϕ), (19)

where δ0 = 1 and δq = 2 if q > 0. We truncate the series in (19) at q = N , chosen such that
convergence of the final results is guaranteed, taking into account the decaying behavior of
the Bessel functions with respect to the order. The value of N is chosen later; all terms of

0 k0 k

Figure 2. Contour of the integration.
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order higher than N are negligibly small. This is justified by invoking a computational test.
The Green’s function in polar coordinates now takes the form

G(r, θ;ρ,ϕ)=−2
∫
L

F(k)

N∑
q=0

δqJq(kr)Jq(kρ) cosq(θ −ϕ)dk. (20)

In the sequel, we use the Green’s function in the form (20).
At the same time the deflection function has to be chosen for each shape of the plate sep-

arately. For the circular plate it can be expressed by the superposition of Bessel functions [6].
Analogously, for the ring-shaped plate the deflection can be represented as a series of Hankel
functions with corresponding coefficients of the following form

w(ρ,ϕ)=
M∑

m=1

N∑
n=0

[
a(1)
mnH(1)

n (κmρ)+a(2)
mnH(2)

n (κmρ)
]

cosnϕ, (21)

where a
(1)
mn and a

(2)
mn are unknown amplitude functions, κm are the roots of the plate dispersion

relation, which are the so-called reduced wave numbers, and M is the number of these roots
taken into account in the computations.

For the IWD case we use three roots of the dispersion relation in the plate area(
Dκ4 −µ+1

)
κ =±k0. (22)

The roots of the plate dispersion relation (22), shown in Figure 3, are the following: two real
roots ±κ1, and four complex roots ±κ2 and ±κ3, which are symmetrically placed with respect
to both the real and imaginary axes. Due to a property of Hankel functions, three roots are
taken into account for the current situation: real positive κ1 and roots κ2 and κ3, with equal
imaginary parts and equal, but opposite-signed real parts, all three being located in the upper
half-plane. The real root κ1 represents the main traveling wave mode, the two complex roots
represent damped wave modes.

The plate dispersion relation for water of finite depth has the following form(
Dκ4 −µ+1

)
κ tanh κh=K. (23)

The dispersion relation (23) has two real roots ±κ1, and four complex roots ±κ2 and ±κ3

symmetrically placed with respect to both the real and imaginary axes, these six being of the
same order as in the IWD case, and infinitely many purely imaginary roots. We take into
account M roots of Equation (23): one real positive κ1, two complex roots κ2 and κ3, having
equal imaginary parts and equal but opposite-signed real parts, and M − 3 imaginary roots,
all located in the upper half-plane.

k3

-k1

-k2

k2

k1

-k3

Figure 3. Zeros of the dispersion relation for deep water.
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The positions of the roots κm in the complex k-plane are similar to those of the roots of
the water dispersion relation (12), which has one real root k0, corresponding to only one wave
number of deep water, and a number of purely imaginary roots ki , i =1, . . . ,M −3, except for
two complex roots κ2 and κ3. Thus, in the FWD case M is the truncation parameter, and we
take into account M roots of the plate dispersion relation (23) κm, m= 1, . . . ,M, and M − 2
roots of the water dispersion relation (12) ki , i =0, . . . ,M −3.

5. Set of equations

At this point we have only equations resulting from the free-edge conditions to determine the
unknown amplitudes a

(1)
mn and a

(2)
mn. Next we will derive relations from the integro-differential

equation to complete the set of equations.
If we insert the relations for the deflection (21) and Green’s function (20) into (16), the

integro-differential equation at the free surface z=0 takes the expanded form

{
D�2 −µ+1

} M∑
m=1

[
N∑

n=0

a(1)
mnH(1)

n (κmρ) cosnϕ +
N∑

n=0

a(2)
mnH(2)

n (κmρ) cosnϕ

]

+ K

2π

2π∫
0

r0∫
r1

{
D�2 −µ

} M∑
m=1

[
N∑

n=0

a(1)
mnH(1)

n (κmr) cosnθ +
N∑

n=0

a(2)
mnH(2)

n (κmr) cosnθ

]

×
∫
L

F(k)

N∑
q=0

δqJq(kr)Jq(kρ) cosq(θ −ϕ)dk r dr dθ =A

N∑
n=0

εnJn(k0ρ) cosnϕ, (24)

where εn = δnin. Due to the orthogonality relation for the cosine function, we only get a
non-zero contribution in the integrand for n = q. Next we carry out the integration with
respect to θ in (24). The integration over θ itself, when only components dependent on θ are
considered, gives 2π for n=0 and δnπ cosnϕ for n>0, which means 2π cosnϕ for all n. Then,
using the orthogonality of the cosine function, we end up with the following set of N + 1
equations derived from IDE (24):

M∑
m=1

(
Dκ4

m −µ+1
)[

a(1)
mnH(1)

n (κmρ)+a(2)
mnH(2)

n (κmρ)
]

+K

r0∫
r1

M∑
m=1

(
Dκ4

m −µ
)[

a(1)
mnH(1)

n (κmr)+a(2)
mnH(2)

n (κmr)
]

×
∫
L

F(k)Jn(kr)Jn(kρ)dk r dr =AεnJn(k0ρ), (25)

for n=0, . . . ,N . In accordance with [13, Equation 21.8–22] the integration with respect to r

leads us to the difference of two Lommel integrals at r0 and r1. Equation (25) takes the form

M∑
m=1

(
Dκ4

m −µ+1
)[

a(1)
mnH(1)

n (κmρ)+a(2)
mnH(2)

n (κmρ)
]

+K

∫
L

M∑
m=1

(
Dκ4

m −µ
) F(k)

(k2 −κ2
m)

[
a(1)
mnc

(1)
mn +a(2)

mnc
(2)
mn

]
Jn(kρ)dk =AεnJn(k0ρ), (26)

where we have introduced the function c
(q)
mn as a combination of Bessel and Hankel functions

in the form
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c
(q)
mn = r0

[
kJn+1(kr0)H

(q)
n (κmr0)−κmJn(kr0)H

(q)

n+1(κmr0)
]

−r1

[
kJn+1(kr1)H

(q)
n (κmr1)−κmJn(kr1)H

(q)

n+1(κmr1)
]
, q =1,2. (27)

From Equation (26) we can derive 2(M − 2)(N + 1) relations for the determination of
2M(N +1) unknown amplitudes. The set of equations for both cases of water depth is com-
pleted by the free-edge conditions (6) and (7) when the deflection function is inserted there.
These conditions at the edges ρ = r1 and ρ = r0 give us 4(N +1) equations

M∑
m=1

a(1)
mnd

(1)
mn,ij +a(2)

mnd
(2)
mn,ij =0, (28)

where n=0, . . . ,N , i =0,1, j =1,2, and the functions d
(q)
mn,ij are

d
(q)

mn,i1 =
[

H(q)
n (κmri)

(
−κ2

m + (1−ν)n(n−1)

r2
i

)
+H(q)

n+1(κmri)κm

(1−ν)

ri

]
,

d
(q)

mn,i2 =
[
H(q)

n (κmri)

(
− n

ri
κ2
m+ (1−ν)n2(1−n)

r3
i

)
+H(q)

n+1(κmri)

(
κ3
m + (1−ν)n2

r2
i

κm

)]
, (29)

where q =1,2 is the Hankel-function index and ri is either inner-ring contour r1 or outer-ring
contour r0.

From now on we consider the IWD and FWD cases separately.

6. Ring on water of infinite depth

Here the analytic study is given for the case of infinite depth. In the IWD case we only con-
sider part of the solution, namely that related to the water dispersion relation. The analysis
given in this section is a good basis from which to derive a solution for the general and most
complicated case of water of finite depth. To demonstrate the method we wish to use for the
FWD case, we consider the contribution of the pole k =k0 in the IWD case. Here we ignore
the contribution of the integral along the imaginary axis after closing the contour in (20).
This means that local disturbances are disregarded.

The deflection of the plate, the Green’s function and the function F(k) are represented by
expressions (21), (20) and (18a), respectively. For deep-water wave number k0 equals K, so
k0 =ω2/g.

Now we analyze the k-integral in IDE (26). The integrand has the poles k =±κm, shown
in Figure 3, and can be represented as a sum of four integrals

k0

∞∫
0

k

(k −k0)(k
2 −κ2

m)

[
a(1)
mnc

(1)
mn +a(2)

mnc
(2)
mn

]
Jn(kρ)dk =a(1)

mn (I01 − I11)+a(2)
mn (I02 − I12) , (30)

where the path of integration in (31) is below the singularities k =k0 and k =κ1, respectively,
and the integrals Iiq for i =0,1, q =1,2 are

Iiq =k0ri

∞∫
0

k

(k −k0)(k
2 −κ2

m)

[
kJn+1(kri)H

(q)
n (κmri)−κmJn(kri)H

(q)

n+1(κmri)
]
Jn(kρ)dk, (31)
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with ri as r1 or r0, m=1, . . . ,M and n=0, . . . ,N . The contour of integration may be closed
in the complex k-plane. In the integral Iiq we split up the Bessel function of largest argument
to be able to close the contour of integration and, furthermore, use Jordan’s lemma.

Let us consider the integral I01. For further manipulation we use the fact that ρ <r0 and
then the Bessel function Jt (kr0) is written as the half-sum of the corresponding Hankel func-
tions of the first and second kind

Jt (kr0)= H(1)
t (kr0)+H(2)

t (kr0)

2
, (32)

where t is n or n + 1. Then I01 is decomposed into two integrals. Those two we transform
into integrals along the vertical axis in the complex k-plane plus the sums of the residues at
the poles with factors 2π i as shown in Figure 3. Then the contour of integration for the first
integral with H(1)

t (kr0) is closed in the upper half-plane with the poles k = κm, and for the
second one with H(2)

t (kr0) is closed in the lower half-plane, where the poles are at k =−κm.
These two situations have to be considered separately.

If we apply the same procedure to the integral I02, the contour for its first integral,
obtained by (32) and containing H(1)

t (kr0), can be closed in the upper half-plane, and for the
integral with H(2)

t (kr0) in the lower half-plane. For the integrals I11 and I12 the same closure
procedure is applied, but with one sufficient difference. In this case ρ > r1 and, therefore, to
close the contours of integration we represent the Bessel functions Jn(kρ) as the half-sums of
corresponding Hankel functions of the first and second kind, as was done in (32).

When the contours are closed for all integrals, we apply the Cauchy residue lemma at the
poles k=κm for the integrals with the contour closed in the upper half-plane and at the poles
k = −κm for the integrals with the contour closed in the lower half-plane. The Wronskian
W {H(1)

n (κmri),H(2)
n (κmri)} applies for the combination of Hankel functions

H(1)

n+1(κmri)H(2)
n (κmri)−H(1)

n (κmri)H
(2)

n+1(κmri)=− 4i
πκmri

. (33)

Then, adding up the resulting terms and considering the coefficients of Jn(κri), we derive the
plate dispersion relation for deep water (22), where the plus sign in the right-hand side cor-
responds to the integrals in the upper half-plane, and the minus sign to the integrals in the
lower half-plane. The derivation of the plate dispersion relation from IDE is also a justifica-
tion of our approach.

In the upper half-plane we also obtain a contribution of the pole k =k0 of the integrand,
as seen in Figure 2. This contribution has to cancel the term in the right-hand side of IDE
(26). If we neglect the integral along the imaginary axis, application of Jordan’s lemma and
the contribution of the pole k =k0 lead us to 2(N +1) relations

π ir0

M∑
m=1

(
Dκ4

m −µ
) k2

0

k2
0 −κ2

m

[
k0H(1)

n+1(k0r0)
(
a(1)
mnH(1)

n (κmr0)+a(2)
mnH(2)

n (κmr0)
)

−κmH(1)
n (k0r0)

(
a(1)
mnH(1)

n+1(κmr0)+a(2)
mnH(2)

n+1(κmr0)
)]

=Aεn

(34)

and

π ir1

M∑
m=1

(
Dκ4

m −µ
) k2

0

k2
0 −κ2

m

[
k0Jn+1(k0r1)

(
a(1)
mnH(1)

n (κmr1)+a(2)
mnH(2)

n (κmr1)
)

−κmJn(k0r1)
(
a(1)
mnH(1)

n+1(κmr1)+a(2)
mnH(2)

n+1(κmr1)
)]

=0. (35)
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We have now derived a system of 2M(N + 1) equations (34–35) and (28) with M = 3 for the
determination of 6(N +1) amplitudes a

(1)
mn and a

(2)
mn for ‘infinitely’ deep water. When the ampli-

tudes are known, the plate deflection is calculated by (21).

7. Ring on water of finite depth

In this section we consider a ring on water of finite depth. In general we follow the analysis
as presented in the previous section for the IWD case. For the FWD case the deflection of
the plate is represented by (21) and the Green’s function is given by formulas (20) and (18b).
Here we take into account M −2 roots of the water dispersion relation (12) and M roots of
the plate dispersion relation (23).

Let us consider the function F(k) given by (18b). For the FWD case this function is mer-
omorphic, as it is bounded for all poles. The poles are the roots of the dispersion relation for
the water region (12) k =±ki , i = 0, . . . ,M − 3, where k0 is the positive real root and ki , for
i �=0, is the purely imaginary. Thus, the meromorphic function F(k) for water of finite depth
can be expressed by the following relation

F(k)=
M−3∑
i=0

k2
i

k2
i h−K2h+K

(
1

k +ki

+ 1
k −ki

)
. (36)

The relation (36) is inserted into IDE (26). There are two integrals in the complex k-plane,
those two can be combined into one integral from −∞ to +∞ with the poles k = ki . The
contour of integration is defined as L′. Finally, we derive the governing integro-differential
equation for the case of finite water depth

M∑
m=1

(
Dκ4

m −µ+1
)[

a(1)
mnH(1)

n (κmρ)+a(2)
mnH(2)

n (κmρ)
]
+K

∫
L′

M∑
m=1

(
Dκ4

m −µ
)

× Jn(kρ)

(k2 −κ2
m)

M−3∑
i=0

k2
i

(k2
i h−K2h+K)(k −ki)

[
a(1)
mnc

(1)
mn +a(2)

mnc
(2)
mn

]
dk =AεnJn(k0ρ) (37)

at z=0, where n=0, . . . ,N and the functions c
(q)
mn are given by (27) for q =1,2.

To obtain the dispersion relation we repeat the procedure that was applied for the IWD
case: the representation of k-integral as a sum of four integrals and, further, decomposition
of each of those four into two integrals with contours closed in the different half-planes of
the complex plane. In the FWD case we have the poles, given in Figure 3, plus the poles at
the imaginary axis ±κm for m= 4, . . . ,M. The application of the residue lemma at the poles
leads us to the standard plate dispersion relation for water of finite depth (23).

Next we consider the contributions of the poles of the water dispersion relation (12). The
closure of the contour is shown in Figure 4. The contour for the integrals with H(1)

q (kri)

might be closed in the upper half-plane, while the contour for the integrals with H(2)
q (kri) in

the lower half-plane. In the latter case we get a zero contribution because the poles k =ki are
located as indicated in Figure 4.

An application of the Cauchy theorem to the integrals with the contour closed in the
upper half-plane gives us equations to determine the amplitudes a

(1)
mn and a

(2)
mn. The poles k =

ki , where i =0, . . . ,M −3, result in 2(M −2)(N +1) equations. First (M −2)(N +1) equations



42 A.I. Andrianov and A.J. Hermans

are derived along the outer ring edge ρ = r0 and have the following form

π iKr0

M∑
m=1

(Dκ4
m −µ

)
k2
i

(k2
i −κ2

m)(k2
i h−K2h+K)

×
[
kiH

(1)

n+1(kir0)
(
a(1)
mnH(1)

n (κmr0)+a(2)
mnH(2)

n (κmr0)
)

−κmH(1)
n (kir0)

(
a(1)
mnH(1)

n+1(κmr0)+a(2)
mnH(2)

n+1(κmr0)
)]

=Ai, (38)

where

Ai =
{

Aεn, i =0,

0, i =1, . . . ,M −3,

as the case i =0 corresponds to the pole k =k0. The remaining (M −2)(N +1) equations are
derived along the inner edge of the ring ρ = r1

π iKr1

M∑
m=1

(Dκ4
m −µ

)
k2
i

(k2
i −κ2

m)(k2
i h−K2h+K)

×
[
kiJn+1(kir1)

(
a(1)
mnH(1)

n (κmr1)+a(2)
mnH(2)

n (κmr1)
)

−κmJn(kir1)
(
a(1)
mnH(1)

n+1(κmr1)+a(2)
mnH(2)

n+1(κmr1)
)]

=0. (39)

Thus, we have now derived 2(M − 2)(N + 1) relations (38–39) to determine the unknown
amplitudes. The set of equations, like in the previous section, is completed by 4(N +1) edge
conditions (28). The deflection can now be computed by (21).

The finite water-depth model can be used to solve the problem of shallow or infinitely
deep water. Taking the limits h → 0 and h → ∞ we can derive the solutions for these situ-
ations including transition from the dispersion relation for water of finite depth to the dis-
persion relations for deep and shallow water, respectively.

8. Free-surface elevation and initiated wave pattern

We continue the analysis of the plate-water interaction and consider the open water regions,
that consists of the main region F0 and the gap inside the ring F1. The elevation ζ(ρ,ϕ) of
the free surface can be computed by (14), where the value of ζ inc may be obtained from the
incident wave potential expression (11) by use of the kinematic condition (2) and the value of
ζ pm from the following analysis of IDE in the water area.

The integro-differential equation has the form (37) for the FWD case. Therefore, we obtain
the following expression for the free-surface elevation

k0

k

ki

0

Figure 4. Closure of the contour of the integration in the upper half-plane.
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ζ(ρ,ϕ)=Aeik0ρ cosϕ −K

∫
L′

M∑
m=1

(
Dκ4

m −µ
) Jn(kρ)

(k2 −κ2
m)

×
M−3∑
i=0

k2
i

(k2
i h−K2h+K)(k −ki)

[
a(1)
mnc

(1)
mn +a(2)

mnc
(2)
mn

]
dk. (40)

We notice that in the open water region F0, where ρ >r0 >r1, Jn(kρ) is split up into a half-
sum of corresponding Hankel functions to close the contour of integration, and to do so at
the gap area F1 the Bessel functions Jt (kr1), t =n,n+ 1, are split up for ρ <r1 <r0. Finally,
after using of the residue lemma at the poles k =ki , we obtain for the free-surface elevation

ζ(ρ,ϕ)=Aeik0ρ cosϕ −π i
M∑

m=1

(
Dκ4

m −µ
)

×
M−3∑
i=0

k2
i K

(k2
i h−K2h+K)(k2

i −κ2
m)

[
a(1)
mnf

(1)
mni +a(2)

mnf
(2)
mni

]
, (41)

where the functions f
(q)
mni have the following forms in the open water F0 and in the gap F1

f
(q)
mni =

⎧⎪⎨
⎪⎩

r0H(1)
n (kiρ)

[
kJn+1(kir0)H

(q)
n (κmr0)−κmJn(kir0)H

(q)

n+1(κmr0)
]

in F0,

r1Jn(kiρ)
[
kH(1)

n+1(kir1)H
(q)
n (κmr1)−κmH(1)

n (kir1)H
(q)

n+1(κmr1)
]

in F1,

(42)

for q =1,2 and i =0, . . . ,M −3.
For infinitely deep water the procedure, in general, is the same, but with the pole k = k0

of the water dispersion relation only. We derve the following equation for the free-surface
elevation

ζ(ρ,ϕ)=Aeik0ρ cosϕ −π i
M∑

m=1

(
Dκ4

m −µ
) k2

0

(k2
0 −κ2

m)

[
a(1)
mnf

(1)

mn0 +a(2)
mnf

(2)

mn0

]
, (43)

where the functions f
(q)

mn0, q =1,2, are defined by formula (42), for i =0, for the water regions
F0 and F1.

The expressions (41) and (43) are for the total free-surface elevation for the FWD and
IWD cases. We can subtract the incident field and use the second terms in the right-hand
sides of these expressions, representing ζ pm, to study the resulting wave pattern which is gen-
erated by the plate motion.

9. Numerical results

In this section numerical results are given for the problem for both the IWD and the FWD
models. Results are presented for relevant and practically important cases. We show results
for the plate deflection w, free-surface elevation ζ and initiated wave pattern elevation ζ pm, all
normalized by the wave amplitude A. Calculations are based on the varied f lexural rigidity D,
while the plate radii r1 and r0, Poisson ratio ν =0·25 and ratio m/ρw =0·25 m are constant.
The wave amplitude is A=1 m, water depth and incident wave length are varied, leading to
different values of the wave number k0 and, respectively, of the frequency ω. In all given fig-
ures the values of the inner and outer radii are the following: r1 =100 m and r0 =500 m.
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The number of the roots of the plate dispersion relation that are taken into account for
the FWD case is M = 10. The computation of the Bessel and Hankel functions of complex
argument must be done accurately. Problems may appear when the argument is smaller than
the order of the function and when the argument is too large or too small. Our algorithm
was based on the Amos package [14], with some modifications to increase the accuracy, and
computations were performed using the Fortran compiler. Scaled functions were used, which
remove the exponential behavior in both the upper and lower half-planes. The definitions and
description may be found in [15]. For zero argument we have used table values of Bessel and
Hankel functions. We take N =30 as the highest order of the modes of the Bessel functions,
i.e., we consider Bessel and Hankel functions of order 0 to 30. The choice of the truncation
parameters M and N was also justified by computational testing such as to ensure sufficient
accuracy. More details about the number of the roots can be found in [8] and about the order
of the Bessel functions in [6].

The amplitude coefficients a
(1)
mn and a

(2)
mn, as well as the corresponding Hankel functions,

decay rapidly. With the increase of the radii and, correspondingly, of the arguments of the
functions or the flexural rigidity, the decay becomes faster.

In all figures the left subplot is denoted as (a), and the right as (b); if there are four sub-
plots, then lower left is denoted as (c) and lower right as (d). All figures are symmetric about
the x-axis because incoming plane waves propagate in the x-direction and their crests are par-
allel to the y-axis.

In Figures 5–6 numerical results are shown for the plate deflection for both cases of water depth.
The wave length in the second figure is two times larger than in the first, while the plate parameters
are constant. The plate deflection for larger values of the rigidity is shown in Figure 7.

Numerical results for the elevation of the free surface in the ring gap are given in Fig-
ure 8 for different wave lengths. In Figure 9 we show results for the initiated wave pattern,
i.e., for the free-surface elevation ζ pm, generated by the motion of the plate, and total free-
surface elevation. The subplots for the open water region F0 are given for the surface of the
fluid domain of the radius rf , for water of finite depth. In Figures 10–11 we show a com-
plete set of results for the unknowns being studied in the paper. Results are given for the plate
deflection (a), free-surface elevation (b) in F1, initiated wave pattern (c) and the free-surface
elevation (d) in F0 for the IWD and FWD cases, respectively.

The propagation of the wave through the plate area can be clearly seen, especially for
small values of the plate rigidity. The wave propagates with a curved wave front, as is
observed very well for these cases when the wave length is much smaller than the outer diam-
eter of the ring. In a zone close to the plate edges the deflection can be quite different from
that in the main zone.

The plate deflection and its hydroelastic response to the wave field are highly dependent
on the ratio between outer radius r0 and the wave length λ. With decreasing water depth the
results for the plate deflection and free-surface elevation are changing gradually, upon which
the water depth h itself has a growing influence on the results. For smaller values of the plate
rigidity or stiffness the plate deflection increases, which is demonstrated in Figures 5–7. If
the wave length is decreasing, then the value of the deflection grows. The deflection is larger
numerically when the water depth increases. Also, we found that computational results for
large values of depth, h>100 m, are almost independent of water depth. For deep water the
depth itself does not have a strong influence on the results, and for this situation it is suffi-
cient to take M =10 as well.

We found that for a rigidity D>107 m4 the plate behaves as a rigid body with significant
influence on the surface waves, whereas for D<103 m4 the plate has hardly any influence on
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Figure 5. Deflection of the ring-shaped plate, for λ=50 m, D=105 m4: (a) infinite depth, (b) finite depth, h=20 m.

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

-1.4
 0

 1.4
w

y /r0 y /r0

x /r0 x /r0

w

-1

-0.5

 0

 0.5

 1 -1

-0.5

 0

 0.5

 1

-1.4
 0

 1.4

(a) (b)

Figure 6. Plate deflection, as in Figure 5, for λ=100 m.
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Figure 7. Plate deflection, for λ=100 m, h=100 m: (a) D =106 m4, (b) D =107 m4.
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Figure 9. Initiated wave pattern (a) and free-surface elevation (b), for λ = 500 m, h = 100 m, rf = 2500 m, D =
107 m4.
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Figure 10. Deflection of the plate (a), free-surface elevation in F1 (b), initiated wave pattern (c) and free-surface ele-
vation (d) in F0, for λ=500 m, h=100 m, rf =2500 m, D =108 m4.

the incident surface waves. Realistic values of the rigidity for the VLFP can be of order of
about 107 m4; here many of the results shown for smaller values serve to demonstrate well
the nature of plate-water interaction effects, while the rigidity for the ice can be of order of
about 105 m4.

The influence of the ring gap on the results is also shown. The propagated wave changes
its behavior essentially after crossing the gap. The influence of the gap increases for smaller
lengths of the wave.

The initiated wave pattern is highly dependent on water depth and the physical properties
of the plate. For growing values of the plate flexural rigidity, stiffness or Poisson’s ratio, the
influence of the plate motion on the total elevation of the water surface is growing as well.
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Figure 11. Deflection of the plate (a), free-surface elevation in F1 (b), initiated wave pattern (c) and free-surface ele-
vation (d) in F0, for λ=200 m, rf =1500 m, D =108 m4.

10. Conclusions

The problem of the interaction between the floating thin elastic plate of a ring-shaped plan-
form and incident surface water waves has been solved. An analytic and numerical study of
the hydroelastic behavior of the plate has been presented. The integro-differential equation of
the problem was derived and an algorithm of its numerical solution proposed. For the case
of finite water depth the system of equations for the expansion coefficients has been obtained
analytically. For infinitely deep water the problem has been solved partly.

The vertical displacements in the plate and water regions, the plate deflection and free-
surface elevation, respectively, have been studied and obtained. The influence of the plate motion
on the solution in the water regions was analyzed by the derivation of the initiated wave pattern.
Also, the influence of the ring gap was analyzed and demonstrated. For realistic values of the
plate mass and rigidity, the plate behavior does not differ much from that of a circular plate,
except for the area behind the ring gap. In the inner free surface area F1 the resonant situation,
that is, large free-surface elevation, is possible for some values of the wave length, see Figure
8, as was shown by Hermans [9] for the channel between two plates. This phenomenon is also
demonstrated by Molin in his study of sloshing modes in a moonpool [16].

The solution for water of finite depth can be used for problems with shallow or very deep
(infinite) water. The floating platform should be located in offshore zones of the ocean or sea.
The water depth is rather small in such zones, but as wave lengths can be both short and
long, it is more natural to use the finite-water-depth model to study the hydroelastic response
of the plate to water waves.

The presented approach, particularly the analysis of the IDE and Green’s function, is valid
for any rotational symmetric configuration of the plate. The solution presented above is a
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new application of the integro-differential formulation. This formulation allows us to solve
many problems of interaction between water waves and floating bodies. The main goal of the
method is the derivation of an integro-differential equation along the plate contour, followed
by its analysis and solution. One of the advantages of our approach is that we may find both
vertical displacements, the plate deflection in P and the free-surface elevation in F , using a
common set of equations.

The presented approach is valid when the plate draft and thickness are assumed to be zero. So,
the next task to study is the interaction of incoming water waves and plates of finite thickness.

A possible application of the method is to use it for the hydroelastic analysis of the VLFP.
The planform of the VLFP depends on the water depth, currents of the sea or ocean, where
a floating airport could be located, distance from the coast, etc. In some cases it can make
sense to construct the VLFP of an arbitrary horizontal shape. One can also use the presented
approach to study the motion of large ice fields in water waves, using the physical properties
of the ice instead of those of the elastic plate. Most results are presented for the large plate,
2r0 > λ, but the approach is also valid for small-sized floating plates 2r0 < λ, which may be
used for different purposes in the sea.
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